Thermal damage in Mo/Si based multilayers for short-wavelength FELs

Presenting author: Robbert van de Kruijs
FOM institute for Plasma Physics Rijnhuizen
Outline

- Introduction: multilayers for FELs
- Diffusion in multilayers at the sub-picometer scale
- Diffusion through barriers
- Diffusion in single shot FEL experiments
- Summary, outlook
Multilayer optics for FELs

Main advantages...

- No need to stay below critical angle
 - Freedom of selecting periodicity => wavelength / angle
- Wavelength selectivity ~ FEL radiation bandwidth (~1%)
 - Possibility of further monochromatization
- Polarization sensitive
- Can be applied to (focussing) optics

... and challenges

- Photoinduced surface contamination (vac. env.)
 - Carbon deposition
 - Oxidation
- Stress (e.g. membranes / freestanding coatings)
- Thermal damage
 - Apart from “traditional” damage such as thermal deformation...
 - ...also thermal damage on coating should be taken into account!
What is “Thermal damage”?

Hamburg Weather prediction : ~22°C, UV Index: 6 (High)

“Sunburn is caused by UV radiation, either from the sun or from artificial sources … “

So, what about “sunburn” from FELs? (and what about protection?)

“The best treatment for sunburn is prevention”

FEL:
- Distance to source
- Grazing incidence
...
“what else”?

What are the exact damage mechanisms?
Death of a ML : Single shot damage @ FLASH

Outside damaged area

Inside damaged area

Change in layered structure is observed (contrast, period, …) : What happened?
Outline

- Introduction: multilayers for FELs
- **Diffusion in multilayers at the sub-picometer scale**
- Diffusion through barriers
- Diffusion in single shot FEL experiments
- Summary, outlook
Mo/Si based multilayers for 13.5 nm

7 nm period, normal incidence optics:
- Basic ML structure well characterized.
- “Relatively” low power loads ...
 ... but very tight stability requirements!

⇒ Requires accurate prediction of thermal damage over full lifetime
Thermal damage: Phase transitions

- As-depo structure due to kinetics
- High-T structure due to thermodynamics
Moderate temperatures: Interface diffusion

Diffusion studies by cycles of 48h annealing and structure analysis

- Diffusion leads to additional MoSi$_2$ formation at interfaces

Monitoring diffusion

Experiment: Thermal treatment under protective atmosphere, *in-situ* structure analysis (GIXR, XRD)

- *In-situ* structure analysis enables monitoring of temperature induced structural changes on a *Picometer lengthscale.*
Diffusion mechanism: Temperature scaling

Growth law: Diffusion: $(\Delta \text{interface})^2 \sim Dt$ for diffusion controlled interface growth

Data well described by parabolic growth law.

Arrhenius-type behaviour, activation energy 0.5 eV

In-situ structure analysis allows accurate (<1 pm) characterization of diffusion processes.

Scaling laws allow prediction of thermal damage at “any” time and temperature.
Outline

- Introduction: multilayers for FELs
- Diffusion in multilayers at the sub-picometer scale
- Diffusion through barriers
- Diffusion in single shot FEL experiments
- Summary, outlook
Diffusion through B_4C

Goal: study of single (ex: Si-on-Mo) interface.

High-sensitivity in-situ LEIS @ 500°C:

- Change in the Mo concentration profile reveals Mo diffusion through B_4C barrier.

Fick’s law: Concentration profile yields $D \cdot t$
Acceleration of diffusion

Fick’s law: Concentration profile yields $D \cdot t$

What happens from (1) to (2)?
Accelerated diffusion due to chemical / structural changes?

1. Initial diffusion stage
2. Faster diffusion stage
3. Saturation (no more Mo or Si)

- What happens from (1) to (2)?
 - Accelerated diffusion due to chemical / structural changes?

Appl. Phys. Lett. L08-11772
Chemical analysis of diffusion stages

XPS results suggest B_4C decomposes long before diffusion accelerates.

No evidence of diffusion speedup due to large chemical composition change.
Structural analysis of diffusion stages

(a) Si + SiO₂
(b) Si + SiO₂
MoSi₂
Mo

(c) Si + SiO₂
MoSi₂
Mo

(d) SiO₂
MoSi₂
Mo

Si wafer 10 nm

As deposited Before D enhancement After D enhancement After full annealing
Structural analysis of diffusion stages

TEM just before diffusion speed-up

TEM just after diffusion speed-up

Crystallization → Grain boundary diffusion → Accelerated diffusion
Stage (1) diffusion constants

Barriers strongly reduce diffusion constants!
(unchanged activation energy suggests same damage mechanism: MoSi formation “through barrier”)
Outline

- Introduction: multilayers for FELs
- Diffusion in multilayers at the sub-picometer scale
- Diffusion through barriers
- **Diffusion in single shot FEL experiments**
- Summary, outlook
FLASH beam
\(\lambda = 13.5 \) nm, 10 fs, p-pol, 0.01 – 1 \(\mu \)J/pulse
Microscopy / AFM damage studies

- Damage threshold 45 mJ/cm²

Crater observed:
Sputtering observed above damage threshold?
TEM damage studies

Crater depth = \[\text{damaged periods} \times \text{period change after phase transformation} \]

=> “traditional” diffusion induced structural changes, but on such short timescales?
Pump-probe damage studies

FLASH beam
\(\lambda = 13.5 \text{ nm, 10 fs} \)
0.01 – 1 \(\mu \text{J/pulse} \)

\(\text{XUV pump – optical probe:} \)

40% reflectance increase
Attributed to change in Si optical constant
(solid \(\rightarrow \) melt)

=> This would explain fast diffusion and observed phase transformation
Summary and outlook

- Large knowledge base on Mo/Si coatings is available from development for EUVL
- GIXR reveals diffusion limited growth of MoSi$_2$ interfaces (300K-600K)
 - MoSi$_2$ interface formation has $E_A=0.5$eV
 - Phase transformation to energetically favorable structure for $T > 600K$.
- LEIS reveals multiple diffusion stages in Mo/B4C barrier/Si at $T=770K$, with diffusion acceleration triggered by crystallization at the interfaces.
 - Diffusion barriers reduce diffusion constants, keeping the same E_A
- Damage of Mo/Si with single-shot high-intensity FEL radiation is similar to damage due to thermal annealing: atomic diffusion and phase transitions leading to compaction

It is clear that lessons learned in designing ML’s for “traditional applications” will help greatly in designing ML coatings for FEL applications.
Acknowledgements

FOM Industrial partnership program I10

F. Bijkerk, E. Louis, A. R. Khorsand, R.A. Loch S. Bruijn,
E. D. van Hattum, V. De Rooij-Lohmann

D. Klinger, J. Krzywinski, M. Jurek, J. B. Pełka, R. Sobierajski

J. Chalupski, J. Cihelka, V. Hajkova, L. Juha

K. Sokolowski-Tinten, N. Stojanovic

S. Hau-Riege, R. London

S. Toleikis, K. Tiedtke, H. Wabnitz

J. Gaudin

Mihaela Gorgoi, Franz Schäfers

Rico Keim

Rik ter Veen, Niels Kuipers, Hidde Brongersma

Thanks for your attention!